A dual sgRNA approach for functional genomics in Arabidopsis thaliana

CRISPR AgBio Europe 2017

Laurens Pauwels
Outline

- Workflow for CRISPR/Cas9 in *Arabidopsis thaliana*
- Dual sgRNA approach for functional genomics
- PEAPOD signalling pathway in *tomato*
- Targeting *cis*-regulatory elements for crop improvement
- CRISPR in *maize* and the transformation bottleneck
Arabidopsis thaliana

Workhorse for plant biology

- Atypical floral dip transformation method
- Egg cell transformed
- Chimerism
 - T1 not chimeric for T-DNA
 - Chimeric for CRISPR/Cas9 mutations

(Mao et al., 2016)
High gene editing efficiency in T1 somatic tissue

- Vectors based on Puchta lab (Fauser et al., 2014)
- Analysis of T1 plants using TIDE (Brinkman et al., 2014)
Arabidopsis thaliana

High gene editing efficiency in T1 somatic tissue

- All sgRNAs tested resulted in T1 plants with very high editing levels
- Variation between sgRNAs, but also between T1 plants
- TIDE allows studying indel spectra

Pauwels et al., 2017 BioRxiv
Arabidopsis thaliana

Inheritance of mutations to T2

- 3 lines selected with
 a) High editing levels in T1
 b) 1:3 segregation (1 T-DNA locus)

- Look for Cas9 null-segregants

Pauwels et al., 2017 BioRxiv
Arabidopsis thaliana

Example for FRS7 + FRS12

- Cloning of 2 sgRNAs
- Homoallelic double mutant in T2

Arabidopsis thaliana

Isolation of a new *grxs17* CRISPR allele

- Homoallelic mutant
- NMD
- No phenocopy of known KO lines!
- Truncated protein?

“know your gene”
- Alternative start site
- Alternative first exon
- Alternative splicing
- etc.

Pauwels et al., 2017 BioRxiv
Arabidopsis thaliana

A dual sgRNA approach for gene deletions

- Target protein domain with 2 sgRNAs
- Efficient deletion in T₁
- Inheritance
- Cas9 free deletion mutants in T₂
- Often ‘perfect cut’

References

Pauwels et al., 2017 BioRxiv
Arabidopsis thaliana

Workflow

- Comparable with generating OE line
- Bi-allelic mutant in T2
 - No visual phenotype
 - No positive selection

Pauwels et al., 2017 BioRxiv
Arabidopsis thaliana

PEAOPOD leaf development pathway

- KD of PPD transcriptional regulators
- Larger, dome-shaped leaves
- Increased meristemoid divisions

Gonzalez, Pauwels, Baekelandt et al. 2016 TPC
WO2016005449
Arabidopsis thaliana

PPD pathway controls also seed size

Glycine max PPD amiRNA
Naito et al. 2016

Vigna mungo ppd mutant
Naito et al. 2017
Arabidopsis thaliana

PEAOPOD leaf development pathway

- KIX8 and KIX9 are PPD interacting proteins
- Double kix8 kix9 mutant mimics ppd phenotype

Gonzalez, Pauwels, Baekelandt *et al.* 2016 TPC
WO2016005449
Solanum lycopersicum

Conservation of *KIX8* and *KIX9* function in tomato

- Same vectors as Arabidopsis
- Here: 1 sgRNA for each target
- Mimics *kix8 kix9* phenotype from Arabidopsis already in T1

WT MicroTom

kix8 kix9 CRISPR/Cas9 mutants (T1)

Swinnen *et al.*, unpublished
Solanum lycopersicum

Conservation of \textit{KIX8} and \textit{KIX9} function in tomato

WT MicroTom

\textit{kix8 kix9} CRISPR/Cas9

Swinnen \textit{et al.}, unpublished
Solanum lycopersicum

Targeting cis-regulatory elements for crop improvement

- Crop domestication traits are often caused by mutations in cis-regulatory elements.
- Subtle alterations in expression are favored to avoid pleiotropic effects.
- Regulatory networks (affecting domestication traits) are beginning to be unraveled.
- Genome editing holds promise for engineering of cis-regulatory elements.

Swinnen et al., 2016 TIPS
Solanum lycopersicum

Boosting the nutritional value of tomato

- Altering steroidal glycoalkaloid composition
- Identification of AP2-ERF that targets GAME4 during ripening
- CRISPR KO leads to increased GAME4 in breaker fruit
- TF controls also other genes/processes
- Targeting of cis-regulatory element in GAME4 promoter

Swinnen et al., unpublished
Zea mays

B104 transformation pipeline

- 3 cobs \rightarrow 600 embryos \rightarrow 15 shoots on average
- 7 months (to T1 seed)
- Very reproducible = unique
- CRISPR/Cas9 = extremely efficient: > 20 constructs

=> External service

Coussens et al. 2012
Maize Transformation Service
Zea mays

Example 1 sgRNA

- Initially: pBUN411 (Qi-Jun Chen's lab)
- Now: standard MS Gateway pDEST
- Extra Cas9 module
- Bi-allelic mutations in T0

Vanderhaeghen R *et al.*, unpublished
Zea mays

Transformation = bottleneck: current research

A) Delivery: proteolistics

B) Plant regeneration

- QuickCorn (Dupont Pioneer)
 - OE of *Odp2 + Wus2*

- Developing other *morphogenic regulators*
 - OE of TF1

Vanderhaeghen R *et al.*, unpublished
Zea mays

Transformation = bottleneck

- Standard MS Gateway pDEST
- Cas9 module
- 2 sgRNAs
- Morphogenic regulator module

Vanderhaeghen R et al., unpublished
Acknowledgements

Arabidopsis
- Rebecca De Clercq
- Mily Ron & Anne Britt (UC Davis)
- Alain Goossens lab

Tomato
- Gwen Swinnen
- Jan Van Doorsselaere (VIVES)
- Alain Goossens lab

Maize
- Rudy Vanderhaeghen
- Griet Coussens
- Stijn Aesaert
- Els Van Lerberge
- Mansour Karimi

- Mieke Van Lijsebettens
- Dirk Inzé

Crop Genome Engineering